3.323 \(\int \sqrt {a+b \sec (c+d x)} \tan ^2(c+d x) \, dx\)

Optimal. Leaf size=344 \[ -\frac {2 a (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b^2 d}+\frac {2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}-\frac {2 \sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b d}+\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d} \]

[Out]

-2/3*a*(a-b)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-se
c(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d-2/3*(a+2*b)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))
^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(
1/2)/b/d+2*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(
b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d+2/3*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 344, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3894, 4057, 4058, 3921, 3784, 3832, 4004} \[ -\frac {2 a (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b^2 d}+\frac {2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}-\frac {2 \sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 b d}+\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x]^2,x]

[Out]

(-2*a*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)
]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b^2*d) - (2*Sqrt[a + b]*(a
+ 2*b)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[
c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*b*d) + (2*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[
(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]
*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d + (2*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 3784

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(2*Rt[a + b, 2]*Sqrt[(b*(1 - Csc[c + d*x])
)/(a + b)]*Sqrt[-((b*(1 + Csc[c + d*x]))/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[c + d*x]]/Rt[a
+ b, 2]], (a + b)/(a - b)])/(a*d*Cot[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3894

Int[cot[(c_.) + (d_.)*(x_)]^2*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[(-1 + Csc[c + d*x]
^2)*(a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0]

Rule 3921

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4057

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> -Simp
[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[1/(m + 1), Int[(a + b*Csc[e + f*x])^(m - 1)*Si
mp[a*A*(m + 1) + (A*b*(m + 1) + b*C*m)*Csc[e + f*x] + a*C*m*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A
, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 0]

Rule 4058

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[(Csc[e + f*
x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rubi steps

\begin {align*} \int \sqrt {a+b \sec (c+d x)} \tan ^2(c+d x) \, dx &=\int \sqrt {a+b \sec (c+d x)} \left (-1+\sec ^2(c+d x)\right ) \, dx\\ &=\frac {2 \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d}+\frac {2}{3} \int \frac {-\frac {3 a}{2}-b \sec (c+d x)+\frac {1}{2} a \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {2 \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d}+\frac {2}{3} \int \frac {-\frac {3 a}{2}+\left (-\frac {a}{2}-b\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{3} a \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=-\frac {2 a (a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^2 d}+\frac {2 \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d}-a \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{3} (-a-2 b) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=-\frac {2 a (a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^2 d}-\frac {2 \sqrt {a+b} (a+2 b) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b d}+\frac {2 \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 17.88, size = 692, normalized size = 2.01 \[ \frac {\sqrt {a+b \sec (c+d x)} \left (\frac {2 a \sin (c+d x)}{3 b}+\frac {2}{3} \tan (c+d x)\right )}{d}-\frac {2 \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{\tan ^2\left (\frac {1}{2} (c+d x)\right )+1}} \sqrt {a+b \sec (c+d x)} \left (a \sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right ) \left (a \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )-1\right )^2-b \tan ^4\left (\frac {1}{2} (c+d x)\right )+b\right )+2 i b (a-b) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a+b}{a-b}\right )-i a (a-b) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a+b}{a-b}\right )-6 i a b \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )+1\right ) \sqrt {\frac {-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+a+b \tan ^2\left (\frac {1}{2} (c+d x)\right )+b}{a+b}} \Pi \left (-\frac {a+b}{a-b};i \sinh ^{-1}\left (\sqrt {\frac {b-a}{a+b}} \tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a+b}{a-b}\right )\right )}{3 b d \sqrt {\frac {b-a}{a+b}} \sqrt {\frac {\tan ^2\left (\frac {1}{2} (c+d x)\right )+1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \left (a \left (\tan ^2\left (\frac {1}{2} (c+d x)\right )-1\right )^2-b \tan ^4\left (\frac {1}{2} (c+d x)\right )+b\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x]^2,x]

[Out]

(-2*Sqrt[a + b*Sec[c + d*x]]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/2]^
2)]*((-I)*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Ta
n[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]
 + (2*I)*(a - b)*b*EllipticF[I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)]*Sqrt[1 - Tan
[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]
- (6*I)*a*b*EllipticPi[-((a + b)/(a - b)), I*ArcSinh[Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]], (a + b)/(a - b)
]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2
]^2)/(a + b)] + a*Sqrt[(-a + b)/(a + b)]*Tan[(c + d*x)/2]*(b - b*Tan[(c + d*x)/2]^4 + a*(-1 + Tan[(c + d*x)/2]
^2)^2)))/(3*b*Sqrt[(-a + b)/(a + b)]*d*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sqrt[(1 + Tan[(c + d*x)/2]^
2)/(1 - Tan[(c + d*x)/2]^2)]*(b - b*Tan[(c + d*x)/2]^4 + a*(-1 + Tan[(c + d*x)/2]^2)^2)) + (Sqrt[a + b*Sec[c +
 d*x]]*((2*a*Sin[c + d*x])/(3*b) + (2*Tan[c + d*x])/3))/d

________________________________________________________________________________________

fricas [F]  time = 22.66, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {b \sec \left (d x + c\right ) + a} \tan \left (d x + c\right )^{2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*tan(d*x + c)^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sec \left (d x + c\right ) + a} \tan \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*tan(d*x + c)^2, x)

________________________________________________________________________________________

maple [B]  time = 1.40, size = 1106, normalized size = 3.22 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x)

[Out]

2/3/d*(-1+cos(d*x+c))^2*(cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b)
)^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2+cos(d*x+c)^2*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a
+b))^(1/2))*sin(d*x+c)*a*b+6*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(
a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b-4*cos(d*x+c)^2*(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c)
,((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b+2*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos
(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^2+cos(d*x+c)*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+
c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2+cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d
*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b+6*cos(d*x+c)*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x
+c),-1,((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b-4*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1
+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b+2*cos(d*x+c
)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/si
n(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^2-cos(d*x+c)^3*a^2-cos(d*x+c)^3*a*b+cos(d*x+c)^2*a^2-cos(d*x+c)^2*a
*b-cos(d*x+c)^2*b^2+2*a*b*cos(d*x+c)+b^2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(1+cos(d*x+c))^2/(b+a*cos(d*x+c)
)/cos(d*x+c)/sin(d*x+c)^5/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sec \left (d x + c\right ) + a} \tan \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*tan(d*x + c)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int {\mathrm {tan}\left (c+d\,x\right )}^2\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^2*(a + b/cos(c + d*x))^(1/2),x)

[Out]

int(tan(c + d*x)^2*(a + b/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \sec {\left (c + d x \right )}} \tan ^{2}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**(1/2)*tan(d*x+c)**2,x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))*tan(c + d*x)**2, x)

________________________________________________________________________________________